Precalculus

Continued

March 11, 2019

Purpose: In this problem set, you will continue to explore exponential functions through algebraic manipulation.

1. Suppose the exponential function $y = ab^x$ passes through the points $\left(-1, \frac{3}{2}\right)$ and (1, 24). Find a formula for the function.

2. Suppose the exponential function $y = ab^x$ passes through the points (0,3) and (2,75). Find a formula for the function.

3. Suppose the exponential function $y = ab^x$ passes through the points (1,4) and (2,2). Find a formula for the function.

4. Graph the function $y = 2^x$ including any asymptotes (using technology if you want, but eventually you'll need to do it without technology). What is the range?

5. Graph the function $y = 3 \cdot 2^x - 4$ including any asymptotes. What is the range?

6. Change the function $y = 3 \cdot 2^x - 4$ so that the range is $(-\infty, -4)$.

7. Find the domain and range of the function $y = -\frac{1}{2} \cdot 3^x + 1$.

8. Find the domain and range of the function $y = 2\left(\frac{1}{5}\right)^x - 1$.

9. Use function transformations with the parent function $y = 2^x$ to sketch the graphs of the following functions.

(a) Sketch $y=2^x$ and $y=4\cdot 2^x$ on the same axes. What transformation is this?

(b) Sketch $y = 2^x$ and $y = 2^{x+2}$ on the same axes. What transformation is this?

10. Sketch the graph of $y = -2\left(\frac{1}{3}\right)^x - 3$ and sketch the parent function and any intermediate functions also.

